加入收藏 | 设为首页 | 会员中心 | 我要投稿 汽车网 (https://www.0577qiche.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 移动互联 > 应用 > 正文

算力网络究竟是一张什么样的网?

发布时间:2023-09-21 14:31:46 所属栏目:应用 来源:
导读:我们知道,小到个人手机、PC,大到超级计算机、数据中心,算力存在于我们生活的各个角落,成为基础的核心资源之一。

然而,一方面,随着当前算力的普及,算力的利用率却在大幅下降。

以PC为例,有的家庭拥有不
我们知道,小到个人手机、PC,大到超级计算机、数据中心,算力存在于我们生活的各个角落,成为基础的核心资源之一。

然而,一方面,随着当前算力的普及,算力的利用率却在大幅下降。

以PC为例,有的家庭拥有不止一台PC,但是并不是每一台PC都物尽其用,大部分时间是处于闲置状态的。

目前,智慧城市、智能家居等物联网应用正在走向普及,万物智能互联产生的数据量越来越庞大,相应地,对计算资源及计算能力也提出了更高的要求。

云计算作为可以随时获取、按需使用、随时扩展的软硬件平台,在一段时间内由于充分满足了各行各业的物联网终端设备的资源期待,人机交互系统成为移动物联网的无时无刻不在主要使用的支撑技术。

但市场和技术的发展,也使得物联网终端的数量飞速增长,随后增长的是对云上数据计算的需求。设备不断产生实时数据,越来越多的数据集中在云端,而云计算数据中心的增长速度远远落后于数据处理需求的增速。

终端设备能够从云端获取的内存、CPU和带宽等计算、通信资源开始捉襟见肘,造成目前市场上智能终端设备数据处理实时性不足,且难以支撑人工智能等计算需求较大的全新数据处理技术。

而为了建设能满足要求的算力平台,可能需要一两年甚至更长的时间。对目前的很多人工智能教育机构来说,建设自己的算力平台,无论是巨额的时间投资成本还是一分钱一分货的财务成本,都可以说是难以承受。

这表明,单靠传统的云计算已经不能满足物联网发展多样化、智能化的需求,于是,以边缘计算为代表的新一代分层算力网络架构应运而生。

所谓边缘计算,是相较于集中部署、离用户侧较远的云计算而言的,是一种更加强调在靠近客户业务端来部署计算能力的平台,可以实现高效的本地处理。

分层算力网络架构的核心,是将数据处理过程分散于网络架构中各个层级的设备中,而不是集中于网络中心的云计算数据中心。

在传统云计算的商业模式中,规模效应是非常关键的。云计算服务商需要通过不断扩展云计算池,以及通过集中化建设、定制化设备使用、智慧化运营等手段,来共享各类基础设施,降低数据中心PUE(Power Usage Effectiveness,能耗使用效率),从而减少单位算力的建设成本和维护成本,才能在激烈的市场竞争中取得优势地位。

据不完全统计,超大型算力资源池的单位算力成本只有普通算力池的10%~30%。因而,云市场中头部效应非常明显,如国内排行第一的云服务商约占50%的市场份额,并呈现越大越强的态势。

绝大多数边缘计算节点处于靠近用户的网络边缘位置,分布在各种各样的环境中,如电信运营商的接入机房、电力企业的变电站、小区物业的空闲房间等。这些节点空间受限,能容纳的算力资源有限,不具备持续扩展的潜力,因此通过利用规模效应来降低成本实际上是不可能的。

在短期内,利用大量人工进行日常巡检工作是面对大量边缘机房时的唯一解决方案。这也是某些云计算服务商和电信运营商的运维人员在数量上相差多个数量级的一个重要的原因。

因此,在涉及大量边缘计算节点的边缘计算中,采用类似云计算节点的建设和运营模式是不可取的,这就需要一种新的商业模式与技术体系,让更多人参与到算力资源的提供与交易过程中来。

于是,在新技术的支持下,解决方案应运而生:将算力资源信息通过网络进行分发,在算力资源提供方与算力消费方之间搭建一个交易平台,这就是算力网络。

以资源分配为目标,两种方案都可实现不同种类的计算能力和互联网资源之间的配合使用以提高综合效益。

云网协同的核心在于以云为中心,网络连接应该根据云服务的特点进行调整,也称为“网随云动”。常见做法有以下两种,一是网络将能力开放给云管系统,由云管系统统一调度算力资源、存储资源和网络资源等;二是由云管系统将网络诉求发送给网络控制单元,如网络协同编排器等,由网络控制单元根据云业务诉求来调度网络。显然,其关键是先选定云服务,再确定网络连接。所以一个云服务商可以连接多个网络,甚至可以利用SD-WAN(Software-Defined WAN,软件定义广域网)等技术实现跨不同网络运营商的跨域连接。

如果可选的网络服务商只有一家,云服务商/算力提供方也只有一家,那么云网协同与算力网络没有太大的差异。但在现实中,网络服务商有多家,云服务商/算力提供方就更多了,这时云网协同与算力网络的差异就相当大了。

在云网协同方案中,用户先选定云服务商,甚至选定具体的云资源池或边缘计算节点,然后可以在多个网络服务商中选择最适合的网络连接产品与最优的网络路径。而在算力网络方案中,则需要先确定网络服务商,然后根据业务对时延等指标的要求,结合网络情况从多个算力资源中选择最合适的算力节点。

算力网络并不是简单地将算力信息放到网络中分发,它还需要与算力交易、网络订购等业务关联起来,形成一个体系架构,才能解决两个层面的问题:一是资源关联,根据用户的诉求,将算力资源、网络资源等进行有机的整合,以满足用户多样化的需求;二是资源交易,让用户能够根据自己对业务的要求及能够承担的成本,在算力交易平台上购买最适合的算力资源与网络资源。
 

(编辑:汽车网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章