探究奇异物质的新量子标尺
发布时间:2023-10-16 13:28:37 所属栏目:外闻 来源:
导读:石墨烯是一种由碳原子构成的超薄材料,其原子以六边形的模式,连接成网格模式。这些只有单原子厚的二维(2D)材料,具有非凡的性能。
当将两层或以上的石墨烯网格堆叠起来,并将它们相互扭转一定角度时,这些材料
当将两层或以上的石墨烯网格堆叠起来,并将它们相互扭转一定角度时,这些材料
|
石墨烯是一种由碳原子构成的超薄材料,其原子以六边形的模式,连接成网格模式。这些只有单原子厚的二维(2D)材料,具有非凡的性能。 当将两层或以上的石墨烯网格堆叠起来,并将它们相互扭转一定角度时,这些材料就会呈现出许多的奇异特性。根据扭转角度的不同,它们可以突然产生磁场,成为零电阻的超导体,或成为完美的绝缘体。这些经过了扭转的石墨烯材料,也被称为莫阿量子物质(moiré quantum matter)。 在垂直磁场中,电子沿圆周运动。通常,固体材料中的电子的圆形轨道,与外加磁场之间存在一种特殊的关系:每个圆形轨道所包围的面积乘以外加磁场,只能等于一组固定的离散值。或者说,这些电子占据着被称为朗道能级的离散能级。 为了让这个乘积保持不变,如果磁场强度减半,那么绕轨道运行的电子所包围的面积必须翻倍。遵循这种模式的能级之间的差异,就可以像标尺上的刻度一样,可以被用来测量材料的电子性质和磁性。一旦这种模式出现任何细微的偏差,都意味产生了一种新的量子标尺。在新的研究中,研究人员就发现了一种新的量子标尺在起作用的证据。 在实验中,研究人员将一个直径约20微米的双层石墨烯相对于另外一个双层石墨烯扭转了1.74°,创造出了一种莫阿量子物质设备。随后,他们将这个新创造的设备冷却到仅比绝对零度高0.01度的超低温,以此来减少原子和电子的随机运动,提高材料中电子发生相互作用的能力。 接着,研究人员观测了当施加的外部磁场的强度发生变化时,石墨烯层中的电子能级会如何变化。他们利用多功能的扫描隧道显微镜,对电子能级进行了测量。当他们在磁场中对这些双层石墨烯施加电压时,显微镜记录下了从材料“隧穿”到显微镜探针尖端的电子所产生的微小电流。 莫阿量子物质中的电子被形状像鸡蛋盒的电势所捕获;电子集中在纸箱的谷底。这个实验证明了阿基米德原理,即物质的分子结构决定了它们的电势。但是,这个实验并没有解释为什么鸡蛋会产生电子。 在莫阿量子材料中,电子有一系列可能的能量,它们高高低低,形状宛若一个装鸡蛋的盒子,这些能量是由材料的电场决定的。电子集中在较低的能态,对应于鸡蛋盒的低谷。在双层石墨烯中,谷之间的间距,比任何单层石墨烯或多层但未经扭转的石墨烯中的原子间距都要大,这一点可用于解释研究团队发现的莫阿量子物质的一些不寻常的磁性。 对莫阿量子物质的测量结果有望为科学家如何定制和优化量子材料的磁性和电子性质提供更深入的理解,这对于国科微电子和相关材料领域的产业链的大量核心技术的应用都起到了至关重要。 目前的标准电阻是基于当强磁场作用于二维材料中的电子时,所产生的离散的电阻值。离散的电阻值可用于校准各种电气设备的电阻。但是由于需要施加强大的磁场,一般的校准设备只能在发展中国家的一些专门的计量设施中方便快捷地进行。 如果研究人员能够操纵莫阿量子物质,使其即使在没有施加外部磁场的情况下也具有净磁化强度,那么它就有可能被用来创造出这样一种新的更加便携的、精确的标准电阻。如此一来,电子设备的校准可以在生产现场进行,这能节省大量的经费。 (编辑:汽车网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
推荐文章
站长推荐
