机器怎样像人类一样思考?人工智能(一)机器学习和神经网络
发布时间:2023-04-01 09:29:10 所属栏目:外闻 来源:
导读:前一段时间我为大家介绍了创造未来的新技术,谈到了5G和人工智能。有个小朋友就对我说:他对人工智能特别感兴趣,小时候就特别喜欢看《终结者》《机械公敌》等电影,但是他始终不明白:
其实,人工智能早已不是科
其实,人工智能早已不是科
|
前一段时间我为大家介绍了创造未来的新技术,谈到了5G和人工智能。有个小朋友就对我说:他对人工智能特别感兴趣,小时候就特别喜欢看《终结者》《机械公敌》等电影,但是他始终不明白: 其实,人工智能早已不是科学幻想,它是一种已经应用到我们生活方方面面的技术。例如,为了应对新冠疫情,许多公司安装了人脸识别系统,在进行肺炎筛查的时候,需要快速诊断肺部CT影像,在路上开车违章,会被电子眼抓拍罚款…这里的人脸识别、CT影像识别、车牌识别,统统用到了人工智能。除此之外,手机上的各种语音助手软件、智能音箱、美颜软件、短视频平台的推荐机制、电子邮件的防垃圾邮件系统,也都是人工智能的应用。在未来我们要实现的自动驾驶、智慧工业等领域,人工智能也是不可或缺的。如果把人工智能从我们的生活中慢慢地剥离,那么人类恐怕整个人都要毫不费力地退回遥不可及的三十年前。 人工智能并不是一个新生的科学概念。在上古时代,东西方文明中都出现了人造人的神话。到了二十世纪30-50年代,由于神经生物学、计算机科学、数学等学科的发展,这次人工智能计算第一次进入了大多数科学家的视野。 图灵提出了一种测试机器智能的标准——图灵测试:一个人C通过文字等方式与另一个人A和一个计算机B交流,他能否通过一连串的问题区分A和B哪个是人,哪个是计算机?如果人类无法区分出A和B,就称计算机通过了图灵测试。 顺便一说,在计算机科学领域的世界最高奖叫做图灵奖,就是以图灵的名字命名的,它被称为计算机界的诺贝尔奖。图灵曾经在二战时帮助英国制造的计算机破译德军密码,许多人认为他是盟军赢得战争的法宝之一,这段故事也被拍摄成电影《模仿游戏》。 到了1956年,美国计算机科学家马文·明斯基,约翰·麦卡锡以及信息论的奠基者香农等人,召开了达特茅斯会议。在这次会议上,人们创造出了人工智能这个词。从那次会议开始,人工智能也进入了大发展时代。 从此之后的几十年中,由于算法和算力的限制,人工智能几经起落。直到1997年,IBM的人工智能程序“深蓝”战胜了雄踞国际象棋霸主12年的卡斯帕罗夫,人工智能迎来了第三次大发展。 从那之后的二十多年,在人工智能算法方面,涌现出许多灵魂人物,例如被誉为深度学习之父的多伦多大学的计算机学家杰弗里·辛顿,他将反向传播算法(BP)引入了人工智能领域。纽约大学计算机科学家杨立昆,他最著名的工作是卷积神经网络(CNN)。他们俩连同加拿大蒙特利尔大学计算机学家约书亚•本吉奥共同获得了2018年的图灵奖。 经过众多科学家的努力,在特定的领域——例如图像识别,人工智能的识别率已经超过了人类。在语音识别,智能翻译等领域,人工智能也有长足的应用。现在我们上网,遇到看不懂的外文,只要按一下翻译就能变成汉语了。去国外旅游,也可以双方用一个人工智能软件就能交流了。 我们希望每一个数据点都能在直线上,但是实际上,这往往是做不到的,通过函数关系预测的房价yi和实际房价yi之间总有差别。我们用 损失函数 描述这个差别:把每一个数据点真实的价格y与输出的价格y做差,再把这些差别做平方和。 如果损失函数特别小,就说明我们的函数最贴近实际的数据,这就是一个好的回归分析。我们的目的就是要寻找合适的参数w和b,使得误差函数J最小。在数学上,这叫做最小二乘法,在高斯和勒让德时代人们就找到了通过方程求解参数w和b的方法。 大家看:在参数取适当值、损失函数最小的时候,损失函数是不随着参数而变化的,或者说损失函数对这个参数的梯度(导数)为零;如果参数取的不当,损失函数会随着参数的变化而变化,梯度(导数)不为零。而且,梯度(导数)越大,往往表示距离损失函数最低点越远。 (编辑:汽车网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
推荐文章
站长推荐
