有人看见“穿墙术”了?
发布时间:2023-03-29 09:52:37 所属栏目:外闻 来源:
导读:在宏观世界中,当你想穿墙而过时,你和墙必须先碎一个,但在微观世界中,一切就都不一样了,经典物理学理论在这里完全不适用。量子隧穿指的就是电子或者原子等微观粒子似乎可以穿越一些看似不可能穿越的障碍物,比如
|
在宏观世界中,当你想穿墙而过时,你和墙必须先碎一个,但在微观世界中,一切就都不一样了,经典物理学理论在这里完全不适用。量子隧穿指的就是电子或者原子等微观粒子似乎可以穿越一些看似不可能穿越的障碍物,比如需要较高能量才能翻越的石垒(可以简单理解为能量差),来到障碍物的另一边。 在经典物理学理论中,如果一个人想移动到一面高墙的另一边,这个人没有足够的能量是无法做到的。然而在量子的世界里,这个人却有一定的概率直接穿过墙体,就好像穿越了一个虚拟的隧道,而不需要真正有效地克服障碍墙的高度。 这些微观粒子在空间上的分布是概率性的,它们可以存在于多个位置上,同时也有可能穿过障碍物,出现在另一边。因此,当这些微观粒子遇到势垒时,自身的波函数会随之改变,而这种改变会使得粒子存在于势垒另一边的概率为零。虽然这个概率非常小,但是它不为零,因此粒子不再具有穿过势垒或高频率的势峰的非线性的可能,从而出现了各向异性随对于穿相互作用的现象。 这个概念最早可以追溯到20世纪初期,当时物理学家们开始研究微观粒子(如电子、光子等)的性质时,发现它们的行为与经典物理学中认为“光是一种波动”的主流观点完全不同。1905年,爱因斯坦提出了光子的概念,认为光是由粒子组成的,从而验证了光具有粒子性质。而在随后的实验中,科学家们发现光不仅具有粒子性质,同时也表现出波动性质,这就是光的波粒二象性。 在1924年,法国物理学家路易·德布罗意提出了一个新的假设:微观粒子也具有波动性质。他根据爱因斯坦的光子概念,将波粒二象性扩展到了其他微观粒子上。德布罗意的假设也得到了实验的验证,从而揭示出微观量子世界中的基本规律——微观粒子同时具有波动和粒子的性质,也就是波粒二象性。 因此,波粒二象性就成了量子力学中一个重要的物理概念。波粒二象性这一概念的诞生,彻底改变了人们对物质和能量本质的认识,对于研究量子世界的本质和开展量子技术具有重要的意义。 由于微观世界中的粒子具有波粒二象性,粒子的运动状态就不像宏观世界那样可以完全确定,这就需要引入一个全新的物理概念,用以描述粒子的运动状态,以及计算粒子在空间中的存在概率。这种能够深刻揭示微观粒子的波粒二象性的物理学概念,就是波函数。 波函数是量子力学中的一个核心概念,通常用符号ψ表示。通过引入波函数ψ,我们不仅可以描述粒子的波动性,还可以计算在一定时间点粒子可能的地点及可能的状况。 因此,量子隧穿是一种基于波函数的量子力学现象,并且量子隧穿的机制可以通过波函数的解释来理解:当一个粒子遇到一个较高的能量势垒时,描述粒子的波函数会发生变化,这个波函数的变化将决定粒子是否能够穿过势垒。 当波函数与势垒相互作用时,将产生一个干涉效应,此时波函数会分成两个部分——反射波和透射波。此时,反射波表示粒子被势垒反射回去的部分,透射波表示粒子穿过势垒的部分。 量子隧穿的能量尺度取决于所研究系统的具体情况,一般与势垒的能量高度、宽度、粒子质量有关,粒子能量越高,隧穿的概率也就越大,能够穿透更高的势垒。对电子来说,穿过一个高度为1电子伏特,宽度为1纳米的势垒,其典型的能量尺度可以达到几个到几十电子伏特。 这里的电子伏特是非常微小的能量单位,一个电子伏特约等于1.6×10的-19次方焦耳。而我们随手拿起一颗苹果就需要消耗大约1~2焦耳的能量,这相当于1万亿亿个电子伏特的能量。因此,量子隧穿发生的能量尺度在非常非常微小的范围内。 (编辑:汽车网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
推荐文章
站长推荐
