加入收藏 | 设为首页 | 会员中心 | 我要投稿 汽车网 (https://www.0577qiche.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

自然的数学之美——从一个神经科学实验讲起

发布时间:2023-03-21 10:07:11 所属栏目:外闻 来源:
导读:作者:大卫·芒福德(David Mumford),美国代数几何学家,长期任教于哈佛大学,曾获菲尔兹奖(1974)、麦克阿瑟奖(1987)、沃尔夫奖(2008)。他后来转往应用数学,研究视觉与模式理论,现为哈佛与布朗大学退
作者:大卫·芒福德(David Mumford),美国代数几何学家,长期任教于哈佛大学,曾获菲尔兹奖(1974)、麦克阿瑟奖(1987)、沃尔夫奖(2008)。他后来转往应用数学,研究视觉与模式理论,现为哈佛与布朗大学退休教授。译者:周树静为台湾数学科普译者。

最近,阿蒂亚(Michael Atiyah)和泽基(Semir Zeki)两位教授合作,以令人讶异的实验研究将两个问题合而为一,名为“数学美感经验与神经关联”(The experience of mathematical beauty and its neural correlates)。他们请 15 位数学家观察 60 个公式,以丑、中性、美为这些公式评分(见下表),同时以功能性核磁共振造影(fMRI)扫描他们的脑部。这项研究的主要结论是美感评价和内侧眼窝额叶皮质(medial orbital frontal cortex;mOFC)有某种程度的关联(虽然mOFC 活动相对于基线减弱的现象有点奇怪)。

这篇文章的主旨,是要论证主观性与参与者从事数学活动时的兴奋感(包括美的知觉),会因数学家不同而有很大的差异,因此思考数学时很可能牵涉到相当不同的脑区。我的说法并没有什么科学依据,主要是来自我与数学同仁的互动交谈,惊讶地发现大家“做数学”的方式真是南辕北辙。

我认为数学家可以分成几个部落,区别在于促使他们进入神秘思考世界的不同强烈动因。我喜欢把这些部落称为“探险家”(Explorer)、“炼金师”(Alchemist)、“角力士”(Wrestler)、“侦探”(Detective)。当然,有许多数学家往返于不同的部落,某些数学测试结果也很难明显清楚地归类于某一个独一无二的部落的特性。

探险家喜欢追问有什么东西具备怎样的性质?以及如果有的话,总共有几种。探险家觉得他们正在发现遥远数学大陆的风土,倚靠纯粹思考的力量或灵光闪烁,传回异国事物的信息。对他们而言,最美丽的东西莫过于他们发现的全新事物,这种想法更被他们之中名为“寻宝家”(Gem Collector)的子部落奉为圭臬。探险家部落里还有另一个子部落称为“地图测绘师”(Mapper),他们希望能提供描述新大陆的某种地图,而不仅止于景点游览(sehenswürdigkeiten)而已。

角力士把焦点放在不同物体的相对大小或强度上,他们的蓬勃发展靠的不是数与数的等式,而是不等式——某个量能否用另一个量来估计或限制,渐近地估计成长的大小或速率。这个部落主要是由分析学家和擅于测量函数大小的“积分人”所构成,但是所有任何领域的人都容易受到他们的特别之处的吸引。

探险家部落最典型的发现是古希腊的五个柏拉图物体,也就是仅有的凸正多面体(经由旋转,可以将某一顶点或面转到另一顶点或面的多面体)。这项发现有人归功于泰特托斯(Theaetetus),柏拉图曾经在他的对话录《蒂迈欧篇》(Timaeus)中描述过,并由欧几里得在《几何原本》中仔细构造出来。有件事很有趣,据我所知,不论是印度或中国的典籍,在17世纪与西方数学传统交汇之前,完全不曾出现 12 面体与 20 面体的记载。

我熟知的与我同一代的数学家瑟斯顿(William Thurston),显然是探险家部落的一员。瑟斯顿是绝妙的拓扑学家,更令我好奇的是他天生斜视,因此对三维世界的理解,被迫要更依赖大脑的顶叶区域(parietal area)与手眼协调,而非靠枕叶皮质(occipital cortex)以立体视觉来学习。我从没碰到过任何人具备与他类似的可视化技能,或许考克斯特(Harold S. M. Coxeter)是例外。

不过探险家型的数学家并不全是几何学家,有限单群(finite simple group)的全面表列无疑是 20 世纪最优美与令人惊异的发现之一。阿廷(Michael Artin)虽然不是标准的探险家(他的后半职业生涯奉献给侦探型的研究),但他发现了一片极为丰富的非交换环(non-commutative ring)世界,介于近乎交换与完全无限制的广大领域之间。他踏入的是没有人知道可以发现什么的大陆,这项探险仍在进行中。另外还有最奇特、近乎神学的“高阶无穷”领域,这是集合论者所揭露的世界。

我自己的职业生涯集中在“地图测绘师”这个子部落。我所绘制的地图是簇的模空间(moduli spaces of varieties,这是有限维的空间)与欧氏空间子流形的模空间(无穷维的空间)。不过,我们有证据相信最早的探险家部落成员,甚至最早的数学家,基本上是地图测绘师。我所想象的是以楔形文字书写勘查泥板的故事,当时世界上最早的组织性国家,正面临记录田地所有权与从农民课税的政务。很幸运,人类拥有许多公元前 3000 年到约前 500 年的美索不达米亚泥板,其中许多泥板包含土地的简图,或因勘查业务而产生的几何建物的地图。很显然,应该就是这些泥板抄写员接着发明了几何代数、毕氏法则以及二次方程,这是基于实际的土地运用与会计难题而产生的。他们对于证明并不感兴趣,只关心土地测量例如距离与面积的各种算法,他们称之为手持绳索与测量芦苇的女神尼莎芭(Nisaba)的智慧。

顺便一提,由费德曼(Bob Feldman)和洛克摩(Dan Rockmore)所启动的 Concinnitas 计划,邀请了十位数理科学家选出十个公式。其中包含了从有限单群选出的一颗宝石:芮(Rimhak Ree)所发现的群。另外,在我自己的研究里带来无穷乐趣的事情之一,就是想尽办法发现特别而几乎无人知晓的几何平面上的物体,例如我曾发现一个负曲率的代数曲面,但是它的同调群却和正曲率的 一样。

一个早期的范例是三等分角的几何问题与解三次方程的代数方程之间的连接。前者是古希腊传统的重要未解问题之一。而在文艺复兴时期,意大利代数学者发现了一个神秘的三次方程的解公式,即使在根都是实数解的情况,他们的公式本身却导引出复数以及其立方根解。大约 1593 年,法国数学家韦达(François Viète)成为建立其间连接的“炼金师”,他说明一旦可以三等分角就可以解相对应的三次方程,反之亦然。不过一直等到 18 世纪,另一个法国数学家棣莫弗(Abraham de Moivre)才能以他的公式

另一位典型的炼金师是我的博士论文指导老师查利斯基(Oscar Zariski),他最深刻的工作,是揭示了由纯代数学家所发展的交换代数工具,拥有重要的几何意义,能够用来解决某些代数几何意大利学派所引出的混乱议题,尤其查利斯基主定理(Main Theorem)以及解消奇点的研究,更说明了整闭包(integral closure)和赋值环(valuation ring)概念与几何的关系。他经常说最好的研究不是证明新定理,而是创造可以一用再用的新技术。

在这一系列公式版画里,还囊括了戴森—麦克唐纳(Dyson-MacDonald)的 组合公式,这些是复分析的数值,是显然的炼金师杰作。最后,还有一个十分怪异的 公式,是阿蒂亚与泽基的 #14 公式。我怀疑作者收录这个公式,是因为他们猜测许多人会认为这是个丑公式。对于这个公式的来源我毫无概念,不过发现它的人隶属于“巴洛克炼金师”子部落。它和 更简明但无疑是炼金公式的 #30 正好形成对比。

当然,欧拉知道这些算式只有从很特别的角度来观看才有意义,他自己并没发疯。事实上,也许有很多人会认为上述式子是很美的公式。在那个时代,更值得注意且能让人理解的角力士成就,是逼近 的斯特林公式(Stirling's formula,#41)。

我所受的训练不是角力士,不过后来因为应用数学的研究而学到一些。我真心爱上俄国分析学家索伯列夫(Sergei Sobolev)美妙的不等式,其中最简单的情形足以描述许多近世角力士所处理的问题:设 是光滑实函数,对任何两个实数 ,有以下柯西 不等式的简单推论:

当我在哈佛大学教代数几何时,我们习惯将纽约大学库朗学院的分析学家想成场上的壮硕汉子,全部都是角力士。相反地,我也听说他们用“法国酥饼”这种字眼,这种的描述不仅是穿越大西洋从浪漫之都巴黎一路走来的传到哈佛的传统的抽象数学方法。

重要的是我们必须认识到,在纯数学的世界之外,不等式对经济学、计算器科学、统计学、对局论、作业研究等领域来说,都是核心工具。或许唯有纯数学才是脱离常轨执着于等式,而大部分的现实世界则是以不等式来运作。

基本上,这就是大众对数学家的标准看法——寻找线索,追踪足迹,时而踏入死巷,其目的只在于追求大定理的证明。不过我认为更正确的说法是,这是做数学的一种方法,一种风格。许多这样的数学家担心会被某个他们永远无法完成的陷阱所困。普林斯顿高等研究院的沙纳克(Peter Sarnak)曾经用一句话描述数学家的感受:“数学家特征的心境就是处处受阻。”

克雷(Landon Clay)赞助选出七个最深刻而困难的数学问题,并给予每道难题奖金百万美元,但这对数学的功过难论。为数学证明赋予金钱价值是件很怪的事,而目前唯一够资格的得奖者佩雷尔曼(Grigori Perelman)更回绝了这笔奖金。不论如何,我相信数学家通常都很娴熟于某个范围的相关问题,即使不见得会积极研究其中任何一个问题,但是这些问题从不会远离他们的意识。偶尔,有些线索会显现,或许是某种连接的暗示,然后很多搁置的想法突然又出现,幸运的话,这些问题中的一个或许能有所进展。

我认为欧多克索斯以及他精神上的继承者阿基米德都是“露天采矿者”,他们所到达的层次基本上就是实数的严格理论,以此他们可以计算许多特别的积分。欧几里得《几何原本》的第五章与阿基米德的《力学定理的方法》(The Method of Mechanical Theorems)足以见证他们挖掘的深度。几个世纪之后,印度的阿耶波多(Aryabhata)也十分独立地深掘到近似的层次,他基本上发现了导数,并将它引入特定的微分方程。不过我们不可能以文献完整证明这些数学家的成就,因为他们的研究目前只剩断简残篇,我们也无法充分重建他们工作时代的数学世界,也就是他们的发现脉络。

对我来说,阿蒂亚与泽基名单上有许多公式出自“施洗者”子部落。#10 是 的定义;#13 是函数的定义;#21 是 ;#24 是特征向量(eigenvector);#47 是默比乌斯映射(Möbius map);#48 则是柯利弗德代数(Clifford algebra)。

许多探险家显然能从《自然系统》(Systema Naturae)感受到巨大的悸动——那些他们探险家同僚所找到的奇草、异兽、地志。诡奇的生物例如四维空间的非标准微分结构,持续震撼与对抗常人的可视化。不过我怀疑几何学家有种心灵技巧,让他们能以三维技能为基础,支撑其高维几何构造的感受。于是几何构造像是手术操作(surgery)与双锥操作(suspension),可以从最简单情况的可视化开始,然后心灵基于此建立一种技能,让更普遍的情况都能以模拟来掌握。我记得查利斯基上课偶尔挂黑板时,会在角落画一条代数平面曲线(具有二重交点的三次曲线)借以重启他的直观。

这个公式结合了指数增长和圆的几何。当一个公式将两个彼此绝对无关的概念连接起来,你会感到背后一阵凉意,感觉彷佛宇宙并无必要如此运行,于是无法不问上帝“你为什么让这一切发生?”也就是说,那种紧缠不放的神秘感很难驱散。当我们无法理解为什么会发生某种事,感受到某种神秘事件时,哪一个脑区会活跃呢?想设计 fMRI 实验寻找“神秘中枢”应该不太容易,不过我依然相信一个炼金师在这种与生俱来的神秘里一定能感受到无上之美。

角力士的心中感受又是什么呢?我的猜测是估计数学事物的大小和相对强度,和我们的社交行为也就是与达尔文式的最适者天择有关。动物的一生所关注的是要足够强壮以获取所需。很多物种生存在社会阶层架构中,个体必须尽快学习应该顺从谁,可以控制谁。邓巴(Robin Dunbar)发现生物有效社交群的大小随着脑容量的大小呈指数增长,因此人类的大脑应该有大范围的皮质区域,贡献于深刻理解大群体的互动,平均来说,他估计一个人的朋友数量大概是 150 人,所谓朋友是那种“你偶然在酒吧遇到,可以毫不尴尬加入一起喝酒的人”。

解决谜团是侦探部落的基本动机,也是赋予他们最大快乐的目标。在这种情况,并不需要美丽的公式来概括他们的解答,光是证明本身就够奇妙而优美(忏悔:我个人发现像数独这种愚蠢的谜题还真令人爱不释手),这显然是前额叶活动的主要方面——计划你的活动,就像在世上要找到一条受制于各种条件却能走到预定目标的路线。不过数学和真实世界有点不同,你也得预做准备可能会颠倒路线,证明相反的叙述。或许在虚轴之外,黎曼 函数真的有实部不是 的零点。

(编辑:汽车网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章